valid No Comments

5 Things To Consider When Selecting Your Next Temperature Control Unit for your Injection Molding Machine

A temperature control unit (aka TCU) is an essential piece of equipment that is needed for processing plastic.  Think of a mold as the engine of a car, the TCU could be seen as the radiator to keep the engine cool.  Before we get into details on what you should consider before purchasing your next temperature control unit let’s review what it is and how it works.

 

What is a temperature control unit?

Temperature control units or TCU, are used to preheat the mold (aka tool) and regulate it at a specified temperature by recirculating water or oil.  This is to ensure the molding process is the same from the first part to the last part.  The TCU regulates the temperature of the mold so the process does not change either if it’s summer or winter, hot or cold ambient temperatures in the plant.  Oil is used for temperatures above 250F.  TCUs are used for injection molding machines, blow molding machines and extrusion lines.

How does a temperature control unit work?

On a cold start, the TCU heats up water or oil utilizing the heating elements and the pump recirculates the fluid between the mold.

If the mold gets too hot, the TCU opens a small valve as needed within the unit connected to a cooling tower or chiller water source.

 

 

5 Reasons to Choose Thermal Care’s Temperature Control Unit Over the Competition:

  1. Value

    Everybody wants the best deal and value proposition. Thermal Care’s TCU provides high-flow pumps (up to 10HP pump and flow up to 140 GPM) for more efficient cooling and better cycle times.  For the budget conscious, opt for the basic controller which is easy to operate yet effective for decades of operation.

  2. User Friendly and Easy to Use

    Four swivel casters and front facing supply and return pressure gauges make the unit extremely easy to use and see important information on the TCU.
    The controls are easy to access, view and operate.
    Basic controller: Designed for applications that require basic operation at a great price.
    Standard controller: Provides a wide array of operational and diagnostic information that is easy to access, view and operate. Unit alarms are easily reset on the control panel.
    The premium controller: Includes all the features of the standard controller plus an added level of system monitoring and control for the best user interface, ease of maintenance and troubleshooting when needed.

  3. Industry Leading Warranty and Support

    3 year parts, 3 year labor warranty
    5 year microprocessor parts warranty with $175 lifetime exchange policy
    Lifetime pump heater casting warranty and lifetime pump seal warranty
    24-hour service hotline support is best in the business providing your company with comfort knowing that the graveyard technicians won’t be left hanging.

  4. Easy Maintenance

    Maintenance technicians will love the tool-less easy access to the interior cabinet in less than a minute. Next day air shipping on spare parts is available when needed.

  5. Customization

We can customize our temperature control units to meet your specific processing needs:

SPI interface to sync with your injection molding machine and any other peripheral equipment.
Solid State Relay prevents having to replace contactors
Dual zone units allows 2 TCUs with one plug, heat exchanger and a modulating valve.
Stacking rack allows 2 TCUs to be stacked on top of each for space savings.

 

 

 

 

 

 

 

 

 

 

 

 

 

Thermal Care offers a suite of powerful and efficient mold temperature control units for the plastic industry. Each unit is reliable, easy to operate, and built for dependable operation using an assortment of quality components and is proud to produce one of the best process cooling equipment systems in the industry.

If you have any questions regarding top entry robots, please contact any of the Hirate America team members to provide an automation solution tailored to your requirements.

 

valid No Comments

3 Ways to Reduce Costs in Your Plastics Process Cooling Systems

 

Plastic processing has seen many changes over the years. We have seen significant advancements in process throughput and increased quality control as well as automation and controls. But one thing has remained surprisingly the same—the cooling systems. What most people do not realize is there are new technologies today that can reduce their industrial cooling system operating costs by over 40%.

Often overlooked or considered not as important as other parts of a plastic processing plant, process water cooling systems are gaining more attention as energy costs and concerns over water use continue to increase. There have been a number of advances in technology that provide increased efficiency to reduce production costs as well as global demand for power and fresh water.

Who doesn’t want to save a buck or two, every dollar savings counts when looking at overall operational costs annually.

1. Cut water use by 90% with Adiabatic Fluid Coolers.

Most plastic processing facilities have a cooling tower to provide cooling to hydraulics, chiller condensers, and other process equipment. A cooling tower has a fan and evaporates water to produce 85°F process water. While effective at providing cooling, it uses a lot of water and requires water treatment to control biological growth. Cooling towers also expose the process water to the atmosphere and then require constant filtering.

With limited resources and a heightened awareness of the need to reduce energy and water consumption, the use of fluid coolers has become a popular alternative to conventional evaporative cooling towers.

Similarly, a fluid cooler uses ambient air to cool the process water. However, this is done through a cooling coil and without exposing process water to the atmosphere. This method is effective but limited by the temperature of the ambient air. In most cases, the practical limit is a process of water temperature leaving the dry fluid cooler about 10°F warmer than the entering air temperature.

To expand the usefulness of fluid coolers as a replacement for evaporative cooling towers, manufacturers have added evaporative pads to their fluid coolers to pre-cool the warm summertime air through a process called adiabatic cooling. Adiabatic cooling occurs by evaporating water into the dry air entering the fluid cooler. As the air absorbs water, it is cooled and the cooler air is able to provide a consistent and stable output, leaving water temperature of 85°F to process.

 

 

 

 

 

 

 

 

 

 

 

Although this technology uses some water, the system is extremely water-efficient and only needed during peak summertime conditions. The result is as much as a 90% reduction in water use versus a conventional evaporative cooling tower. In addition, the water is fully evaporated and not recirculated, as is the case with a conventional cooling tower, so there is no need for water treatment. More on Adiabatic Fluid Coolers.

 

 

2. Reduce energy consumption up to 34% with variable-speed chiller compressors.

When plastics processes require water cooler than 85°F, a chiller is used. A chiller uses refrigerant, compressor and evaporator to remove heat from the process water and cool the process fluid to 50°F or so.

Compressors and the use of refrigerant have been around since the 19th century, and many different types of compressors are used, but until recently they all operated at one fixed speed

. A relatively new technology is variable-speed compressors. With this technology, energy use is reduced by slowing the speed of the compressor to just what is needed for the conditions.

When the compressor slows down, there is a reduction of cooling capacity. Most chiller system designs use the maximum possible heat load at 100% production capa

city of the process equipment to ensure there is always enough cooling capacity. In most cases, the production equipment is operating at much less than maximum capacity, so the chiller is ‘over-sized.’ A variable speed compressor is a great way to save this excess energy.

Power use is a “square relationship,” meaning that as the compressor speed changes, the power use changes as a square of the speed change. For instance, if a compressor operates at 80% of its maximum speed, it will use 64% of its full-speed power.

This technology is available in a wide-range of compressor sizes. In addition, the initial equipment cost premium for this technology, depending on the hours of operating and load profile, can pay for itself in 12 to 18 months. More on portable chillers and central chillers.

 

 

3. Dramatically cut chiller energy costs with free-cooling systems.

Considering the ever-increasing need for more efficient systems, the newest trend in central chiller system design is to combine the benefits of a variable-speed compressor with that of an adiabatic fluid cooler.

These hybrid systems use an adiabatic fluid cooler to cool the condenser of the chiller during the summertime, but when the outside ambient temperature is cool enough, the adiabatic fluid cooler directly cools the process water, which means the chiller turns off completely. This saves 100% of the electrical cost of operating the chiller, which is the most significant power consumption of any process cooling system.

The number of hours of free-cooling increases when the process fluid temperature is warmer. In many extrusion applications, the chilled water set point temperature is such that the chiller may only need to run 50% of the year.

 

Who doesn’t want to save a buck or two, every dollar savings counts when looking at overall operational costs annually.  

Thermal Care continuously improves and innovates their products to be the best process cooling equipment systems in the industry.

If you have any questions regarding top entry robots, please contact any of the Hirate America team members to provide an automation solution tailored to your requirements.

 

valid No Comments

Press Release: Thermal Care Next Generation Pumping System Controller

Thermal Care’s second generation of advanced pump system PLCs can expand to control up to 15 pumps and 8 cooling towers, including VFDs and up to 3 process zones, each with up to 4 fluid circuits. Easy to navigate with its standard color touch screen, all the information you need to run your process is available at your fingertips for quick access and management of parameters including pumps and alarms. An added benefit allows you to customize the names of all devices for easy identification. Multiple user safeties, warnings, and alarms, and pump and fan running hours are displayed along with the ability to change lead fans or pumps. If you are looking for peace of mind, the pump system controller is CONNEX 4.0 ready and can provide secure detailed system status information via a remote mobile device or computer with an internet connection. When used in conjunction with Thermal Care s extensive line of heat transfer equipment, the most the most energy efficient, operationally intuitive, and productive systems can be provided.

 

MAIN SCREEN

FAN SCREEN

DIFFERENTIAL PRESSURE SCREEN

DIVERTING VALVE SCREEN

TRENDING SCREEN

 

Thermal Care continuously improves and innovates their products to be the best process cooling equipment systems in the industry.

If you have any questions regarding top entry robots, please contact any of the Hirate America team members to provide an automation solution tailored to your requirements.

 

valid No Comments

Significant Energy Cost Savings With Portable Chillers

Standard fixed speed compressors on chillers use a hot gas bypass valve that bypasses hot discharge refrigerant gas back into the compressor to simulate 100% load. This keeps the compressor running at full speed at all times regardless of the actual load. As an example, this means that if you have a 10 TON chiller and have 10 machines that each require 1 TON of chilling, or 2 machines that require 5 TONs each, you will be running your chiller at 100% capacity, regardless of whether you have 8 of your 10 machines running (80% load) or 1 of your 2 machines running (50%) load. With this example, the chiller will be costing you a fixed amount on your energy bill regardless of how many of your machines are running.

Thermal Care introduced the first portable chillers with a variable speed compressor on their 10 TON and 20 TON portable chillers.  It allows the compressor to reduce the actual output from 100% down to 30% by reducing the speed of the compressor while utilizing hot gas bypass to bring the load from 30% all the way down to 0% without shutting off the compressor.  As shown in the graph below, the energy savings often result in less than a 1 year return on investment.

Key Features:

  • Touch Screen PLC with full diagnostics
  • Totally enclosed, air-over (TEAO) low-noise, energy-efficient fan(s)
  • Removable tools-free access door
  • Power 3-phase error alarm
  • Warranty – lifetime controller replacement ($175 after 5 years)

 

How do you calculator your cooling your process requirement?

Click the link below for a simple calculator to get a good estimate on your cooling tonnage.

https://www.thermalcare.com/plastics-chillers-calculator/

Want to estimate your annual energy savings (above 50 TONs)?

https://www.thermalcare.com/tc-central-calculator/

 

Hirate America partners with Thermal Care, one of the best process cooling equipment and systems for removing heat from industrial applications.

 

If you have a project that you would like to discuss, feel free to contact us below to schedule a free consultation.